Full Text

Turn on search term navigation

© 2015 Spillane et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Human chromosomal region 13q14 is a deletion hotspot in prostate cancer, multiple myeloma, and chronic lymphocytic leukemia. This region is believed to host multiple tumor suppressors. Chromosome Condensation 1-like (CHC1L) is located at 13q14, and found within the smallest common region of loss of heterozygosity in prostate cancer. Decreased expression of CHC1L is linked to pathogenesis and progression of both prostate cancer and multiple myeloma. However, there is no direct evidence for CHC1L’s putative tumor suppressing role in current literature. Presently, we describe the generation and characterization of Chc1L knockout mice. Chc1L-/- mice do not develop cancer at a young age, but bone marrow and spleen cells from 8–12 week-old mice display an exaggerated proliferative response. By approximately two years of age, knockout and heterozygote mice have a markedly increased incidence of tumorigenesis compared to wild-type controls, with tumors occurring mainly in the spleen, mesenteric lymph nodes, liver and intestinal tract. Histopathological analysis found that most heterozygote and knockout mice succumb to either Histiocytic Sarcoma or Histiocyte-Associated Lymphoma. Our study suggests that Chc1L is involved in suppression of these two histiocyte-rich neoplasms in mice and supports clinical data suggesting that CHC1L loss of function is an important step in the pathogenesis of cancers containing 13q14 deletion.

Details

Title
Chromosome Condensation 1-Like (Chc1L) Is a Novel Tumor Suppressor Involved in Development of Histiocyte-Rich Neoplasms
Author
Spillane, David R; Ding Yan Wang; Newbigging, Susan; Wang, Youdong; Chang-Xin, Shi; Hae-Ra Cho; Shimizu, Hiroki; Gramolini, Anthony; Liu, Mingyao; Xiao-Yan, Wen
First page
e0135755
Section
Research Article
Publication year
2015
Publication date
Aug 2015
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1708482840
Copyright
© 2015 Spillane et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.