Full text

Turn on search term navigation

Copyright © 2015 Jia-You Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

MicroRNAs (miRNAs) are a group of endogenous noncoding RNAs that play important roles in many biological processes. This study aimed to check if miRNAs were involved in the response to acupuncture in rats. Microarray analysis was performed to compare the miRNA expression profiles of medulla in spontaneously hypertensive rats (SHRs) treated with or without acupuncture. Our microarray analysis identified 222 differentially expressed miRNAs in the medulla of SHRs treated with acupuncture at taichong acupoint. Among these miRNAs, 23 miRNAs with a significant difference were found in acupuncture-treated SHRs compared to untreated rats. These 23 miRNAs could regulate 2963 target genes which were enriched in at least 14 pathways based on our bioinformatic analysis. miRNA-339, miR-223, and miR-145 were downregulated in the medulla of SHRs compared to normotensive rats. Notably, these miRNAs were upregulated to basal levels in the medulla of SHRs treated with acupuncture at taichong in comparison with SHRs receiving acupuncture at nonacupoint group or SHRs without any treatment. Our findings have revealed significant changes of a panel of selective miRNAs in hypertensive rats treated at taichong acupoint. These data provide insights into how acupuncture elicits beneficial effects on hypertension.

Details

Title
MicroRNA Profiling Response to Acupuncture Therapy in Spontaneously Hypertensive Rats
Author
Jia-You, Wang; Li, Hui; Chun-Mei, Ma; Jia-Lu, Wang; Xin-Sheng, Lai; Shu-Feng, Zhou
Publication year
2015
Publication date
2015
Publisher
John Wiley & Sons, Inc.
ISSN
1741427X
e-ISSN
17414288
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1709291164
Copyright
Copyright © 2015 Jia-You Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.