Full Text

Turn on search term navigation

© 2015 Gaimster, Summers. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

During the transition from exponential to stationary phase E. coli produces a substantial quantity of the small, aromatic signalling molecule indole. In LB medium the supernatant indole concentration reaches a maximum of 0.5–1 mM. At this concentration indole has been implicated in many processes inducing acid resistance and the modulation of virulence. It has recently been shown that cell-associated indole transiently reaches a very high concentration (approx. 60 mM) during stationary phase entry, presumably because indole is being produced more rapidly than it can leave the cell. It is proposed that this indole pulse inhibits growth and cell division, causing the culture to enter stationary phase before nutrients are completely exhausted, with benefits for survival in long-term stationary phase. This study asks how E. coli cells rapidly upregulate indole production during stationary phase entry and why the indole pulse has a duration of only 10–15 min. We find that at the start of the pulse tryptophanase synthesis is triggered by glucose depletion and that this is correlates with the up-regulation of indole synthesis. The magnitude and duration of the resulting indole pulse are dependent upon the availability of exogenous tryptophan. Indole production stops when all the available tryptophan is depleted and the cell-associated indole equilibrates with the supernatant.

Details

Title
Regulation of Indole Signalling during the Transition of E. coli from Exponential to Stationary Phase
Author
Gaimster, Hannah; Summers, David
First page
e0136691
Section
Research Article
Publication year
2015
Publication date
Sep 2015
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1710303292
Copyright
© 2015 Gaimster, Summers. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.