Full text

Turn on search term navigation

Springer Science+Business Media, LLC 2011

Abstract

The thermal conductivity of boron nitride/ethylene glycol (BN/EG) nanofluids was investigated by transient hot-wire method and two abnormal phenomena was reported. One is the abnormal higher thermal conductivity enhancement for BN/EG nanofluids at very low-volume fraction of particles, and the other is the thermal conductivity enhancement of BN/EG nanofluids synthesized with large BN nanoparticles (140 nm) which is higher than that synthesized with small BN nanoparticles (70 nm). The chain-like loose aggregation of nanoparticles is responsible for the abnormal increment of thermal conductivity enhancement for the BN/EG nanofluids at very low particles volume fraction. And the difference in specific surface area and aspect ratio of BN nanoparticles may be the main reasons for the abnormal difference between thermal conductivity enhancements for BN/EG nanofluids prepared with 140- and 70-nm BN nanoparticles, respectively.

Details

Title
Investigation on two abnormal phenomena about thermal conductivity enhancement of BN/EG nanofluids
Author
Li, Yanjiao; Zhou, Jing'en; Luo, Zhifeng; Tung, Simon; Schneider, Eric; Wu, Jiangtao; Li, Xiaojing
Pages
1-7
Section
Nanofluids
Publication year
2011
Publication date
Jul 2011
Publisher
Springer Nature B.V.
ISSN
19317573
e-ISSN
1556276X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1712364205
Copyright
Springer Science+Business Media, LLC 2011