Full Text

Turn on search term navigation

© 2015 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The problem of finding k-edge-connected components is a fundamental problem in computer science. Given a graph G = (V, E), the problem is to partition the vertex set V into {V1, V2,…, Vh}, where each Vi is maximized, such that for any two vertices x and y in Vi, there are k edge-disjoint paths connecting them. In this paper, we present an algorithm to solve this problem for all k. The algorithm preprocesses the input graph to construct an Auxiliary Graph to store information concerning edge-connectivity among every vertex pair in O(Fn) time, where F is the time complexity to find the maximum flow between two vertices in graph G and n = ∣V∣. For any value of k, the k-edge-connected components can then be determined by traversing the auxiliary graph in O(n) time. The input graph can be a directed or undirected, simple graph or multigraph. Previous works on this problem mainly focus on fixed value of k.

Details

Title
A Simple Algorithm for Finding All k-Edge-Connected Components
Author
Wang, Tianhao; Zhang, Yong; Chin, Francis Y L; Hing-Fung Ting; Tsin, Yung H; Poon, Sheung-Hung
First page
e0136264
Section
Research Article
Publication year
2015
Publication date
Sep 2015
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1719284739
Copyright
© 2015 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.