Full text

Turn on search term navigation

© 2015 White, Gomer. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

For both wound healing and the formation of a fibrotic lesion, circulating monocytes enter the tissue and differentiate into fibroblast-like cells called fibrocytes and pro-fibrotic M2a macrophages, which together with fibroblasts form scar tissue. Monocytes can also differentiate into classically activated M1 macrophages and alternatively activated M2 macrophages. The proteases thrombin, which is activated during blood clotting, and tryptase, which is released by activated mast cells, potentiate fibroblast proliferation and fibrocyte differentiation, but their effect on macrophages is unknown. Here we report that thrombin, tryptase, and the protease trypsin bias human macrophage differentiation towards a pro-fibrotic M2a phenotype expressing high levels of galectin-3 from unpolarized monocytes, or from M1 and M2 macrophages, and that these effects appear to operate through protease-activated receptors. These results suggest that proteases can initiate scar tissue formation by affecting fibroblasts, fibrocytes, and macrophages.

Details

Title
Trypsin, Tryptase, and Thrombin Polarize Macrophages towards a Pro-Fibrotic M2a Phenotype
Author
White, Michael J V; Gomer, Richard H
First page
e0138748
Section
Research Article
Publication year
2015
Publication date
Sep 2015
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1719319636
Copyright
© 2015 White, Gomer. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.