Full Text

Turn on search term navigation

© 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Brügger V, Engler S, Pereira JA, Ruff S, Horn M, Welzl H, et al. (2015) HDAC1/2-Dependent P0 Expression Maintains Paranodal and Nodal Integrity Independently of Myelin Stability through Interactions with Neurofascins. PLoS Biol 13(9): e1002258. doi:10.1371/journal.pbio.1002258

Abstract

The pathogenesis of peripheral neuropathies in adults is linked to maintenance mechanisms that are not well understood. Here, we elucidate a novel critical maintenance mechanism for Schwann cell (SC)-axon interaction. Using mouse genetics, ablation of the transcriptional regulators histone deacetylases 1 and 2 (HDAC1/2) in adult SCs severely affected paranodal and nodal integrity and led to demyelination/remyelination. Expression levels of the HDAC1/2 target gene myelin protein zero (P0) were reduced by half, accompanied by altered localization and stability of neurofascin (NFasc)155, NFasc186, and loss of Caspr and septate-like junctions. We identify P0 as a novel binding partner of NFasc155 and NFasc186, both in vivo and by in vitro adhesion assay. Furthermore, we demonstrate that HDAC1/2-dependent P0 expression is crucial for the maintenance of paranodal/nodal integrity and axonal function through interaction of P0 with neurofascins. In addition, we show that the latter mechanism is impaired by some P0 mutations that lead to late onset Charcot-Marie-Tooth disease.

Details

Title
HDAC1/2-Dependent P0 Expression Maintains Paranodal and Nodal Integrity Independently of Myelin Stability through Interactions with Neurofascins
Author
Brügger, Valérie; Engler, Stefanie; Pereira, Jorge A; Ruff, Sophie; Horn, Michael; Welzl, Hans; Münger, Emmanuelle; Vaquié, Adrien; Sidiropoulos, Páris NM; Egger, Boris; Yotovski, Peter; Filgueira, Luis; Somandin, Christian; Lühmann, Tessa C; D'Antonio, Maurizio; Yamaguchi, Teppei; Matthias, Patrick; Suter, Ueli; Jacob, Claire
Section
Research Article
Publication year
2015
Publication date
Sep 2015
Publisher
Public Library of Science
ISSN
15449173
e-ISSN
15457885
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1720482295
Copyright
© 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Brügger V, Engler S, Pereira JA, Ruff S, Horn M, Welzl H, et al. (2015) HDAC1/2-Dependent P0 Expression Maintains Paranodal and Nodal Integrity Independently of Myelin Stability through Interactions with Neurofascins. PLoS Biol 13(9): e1002258. doi:10.1371/journal.pbio.1002258