Full text

Turn on search term navigation

Copyright © 2015 Wei-Mao Qian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We present the best possible parameters [subscript]λ1[/subscript] ,[subscript]μ1[/subscript] ∈R and [subscript]λ2[/subscript] ,[subscript]μ2[/subscript] ∈(1/2,1) such that double inequalities [subscript]λ1[/subscript] C(a,b)+(1-[subscript]λ1[/subscript] )A(a,b)<T(a,b)<[subscript]μ1[/subscript] C(a,b)+(1-[subscript]μ1[/subscript] )A(a,b), C[[subscript]λ2[/subscript] a+(1-[subscript]λ2[/subscript] )b,[subscript]λ2[/subscript] b+(1-[subscript]λ2[/subscript] )a]<T(a,b)<C[[subscript]μ2[/subscript] a+(1-[subscript]μ2[/subscript] )b,[subscript]μ2[/subscript] b+(1-[subscript]μ2[/subscript] )a] hold for all a,b>0 with a≠b, where A(a,b)=(a+b)/2, C(a,b)=([superscript]a3[/superscript] +[superscript]b3[/superscript] )/([superscript]a2[/superscript] +[superscript]b2[/superscript] ) and T(a,b)=2[superscript]∫0π/2[/superscript] [superscript]a2[/superscript] [superscript]cos2[/superscript] θ+[superscript]b2[/superscript] [superscript]sin2[/superscript] θdθ/π are the arithmetic, second contraharmonic, and Toader means of a and b, respectively.

Details

Title
Sharp Bounds for Toader Mean in terms of Arithmetic and Second Contraharmonic Means
Author
Wei-Mao, Qian; Ying-Qing, Song; Xiao-Hui, Zhang; Yu-Ming, Chu
Publication year
2015
Publication date
2015
Publisher
John Wiley & Sons, Inc.
ISSN
23148896
e-ISSN
23148888
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1721316611
Copyright
Copyright © 2015 Wei-Mao Qian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.