Full text

Turn on search term navigation

© 2015 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Nickel is an essential trace metal naturally found in the environment. It is also common in occupational settings, where it associates with various levels of both occupational and nonoccupational exposure In vitro studies have shown that nickel exposure can lead to intracellular accumulation of Ni2+, which has been associated with global decreases in DNA methylation, increases in chromatin condensation, reductions in H3K9me2, and elevated levels of H3K4me3. Histone modifications play an important role in modulating chromatin structure and gene expression. For example, tri-methylation of histone H3k4 has been found to be associated with transcriptional activation, and tri-methylation of H3k27 has been found to be associated with transcriptional repression. Aberrant histone modifications have been found to be associated with various human diseases, including cancer. The purpose of this work was to identify biomarkers for populations with occupational nickel exposure and to examine the relationship between histone methylation and nickel exposure. This may provide a scientific indicator of early health impairment and facilitate exploration of the molecular mechanism underlying cancer pathogenesis.

Methods

One hundred and forty subjects with occupational exposure to Ni and 140 referents were recruited. H3K4 and H3K27 trimethylation levels were measured in subjects’ blood cells.

Results

H3K4me3 levels were found to be higher in nickel smelting workers (47.24±20.85) than in office workers (22.65±8.81; P = 0.000), while the opposite was found for levels of H3K27me3(nickel smelting workers, 13.88± 4.23; office workers, 20.67± 5.96; P = 0.000). H3K4me3 was positively (r = 0.267, P = 0.001) and H3K27 was negatively (r = -0.684, P = 0.000) associated with age and length of service in smelting workers.

Conclusion

This study indicated that occupational exposure to Ni is associated with alterations in levels of histone modification.

Details

Title
Histone Methylation in Nickel-Smelting Industrial Workers
Author
Li, Ma; Bai, Yana; Pu, Hongquan; Gou, Faxiang; Dai, Min; Wang, Hui; He, Jie; Zheng, Tongzhang; Cheng, Ning
First page
e0140339
Section
Research Article
Publication year
2015
Publication date
Oct 2015
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1722648595
Copyright
© 2015 Ma et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.