Full text

Turn on search term navigation

Copyright © 2015 ZhiQiang Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Vibration signals of gearbox are sensitive to the existence of the fault. Based on vibration signals, this paper presents an implementation of deep learning algorithm convolutional neural network (CNN) used for fault identification and classification in gearboxes. Different combinations of condition patterns based on some basic fault conditions are considered. 20 test cases with different combinations of condition patterns are used, where each test case includes 12 combinations of different basic condition patterns. Vibration signals are preprocessed using statistical measures from the time domain signal such as standard deviation, skewness, and kurtosis. In the frequency domain, the spectrum obtained with FFT is divided into multiple bands, and the root mean square (RMS) value is calculated for each one so the energy maintains its shape at the spectrum peaks. The achieved accuracy indicates that the proposed approach is highly reliable and applicable in fault diagnosis of industrial reciprocating machinery. Comparing with peer algorithms, the present method exhibits the best performance in the gearbox fault diagnosis.

Details

Title
Gearbox Fault Identification and Classification with Convolutional Neural Networks
Author
Chen, ZhiQiang; Li, Chuan; Sanchez, Rene-Vinicio
Publication year
2015
Publication date
2015
Publisher
John Wiley & Sons, Inc.
ISSN
10709622
e-ISSN
18759203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1726683463
Copyright
Copyright © 2015 ZhiQiang Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.