Full text

Turn on search term navigation

Copyright © 2015 Hetao Hou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

One steel grid and five thin-walled concrete-filled steel tubes (CTST) used as the supports of tunnel were tested in site for investigating the mechanical behavior. The mechanical influences of thickness, node form, and concrete on CTST were gained and compared with the impacts on steel grid. It is indicated that high antideformation capacity of CTST improved the stability of surrounding rock in short time. The cementitious grouted sleeve connection exhibited superior flexibility when CTST was erected and built. Although the deformation of rock and soil in the tunnel was increasing, good compression resistance was observed by CTST with the new connection type. It was also seen that vault, tube foot, and connections were with larger absolute strain values. The finite element analysis (FEA) was carried out using ABAQUS program. The results were validated by comparison with experimental results. The FE model could be referred by similar projects.

Details

Title
Structural Behavior of Thin-Walled Concrete-Filled Steel Tube Used in Cable Tunnel: An Experimental and Numerical Investigation
Author
Hou, Hetao; Ma, Su; Qu, Bing; Liang, Yanhong; Jin, Yanjun; Zhu, Wencan; Chen, Lei
Publication year
2015
Publication date
2015
Publisher
John Wiley & Sons, Inc.
ISSN
16878434
e-ISSN
16878442
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1726684542
Copyright
Copyright © 2015 Hetao Hou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.