Full Text

Turn on search term navigation

HEP and Springer 2014

Abstract

MicroRNAs (miRNAs) are small, non-coding RNAs that function as post-transcriptional regulators of gene expression. The deregulated expression of miRNAs is associated with a variety of diseases, including breast cancer. In the present study, we found that miR-495 was markedly up-regulated in clinical breast cancer samples by quantitative real time-PCR (qRT-PCR). Junctional adhesion molecule A (JAM-A) was predicted to be a potential target of miR-495 by bioinformatics analysis and was subsequently verified by luciferase assay and Western blotting. JAM-A was found to be negatively correlated with the migration of breast cancer cells through loss-of-function and gain-of-function assays, and the inhibition of JAM-A by miR-495 promoted the migration of MCF-7 and MDA-MB-231 cells. Furthermore, overexpression of JAM-A could restore miR-495-induced breast cancer cell migration. Taken together, our findings suggest that miR-495 could facilitate breast cancer progression through the repression of JAM-A, making this miRNA a potential therapeutic target.

Details

Title
MicroRNA-495 induces breast cancer cell migration by targeting JAM-A
Author
Cao, Minghui; Nie, Weiwei; Li, Jing; Zhang, Yujing; Yan, Xin; Guan, Xiaoxiang; Chen, Xi; Zen, Ke; Zhang, Chen-yu; Jiang, Xiaohong; Hou, Dongxia
Pages
862-872
Publication year
2014
Publication date
Jul 2014
Publisher
Springer Nature B.V.
ISSN
1674800X
e-ISSN
16748018
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1727384697
Copyright
HEP and Springer 2014