Full text

Turn on search term navigation

Copyright © 2015 Xiaohua Du et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Purpose. In this report, we investigated the protective mechanism of scutellarin (SCU) in vitro and in vivo which could be involved in endothelial cGMP-dependent protein kinase (PKG), vasodilator stimulated phosphoprotein (VASP) pathway, and vascular endothelium dysfunction (EtD). Method. Human brain microvascular endothelial cells (HBMECs) with hypoxia reoxygenation (HR) treatment and rats with cerebral ischemia reperfusion (CIR) treatment were applied. Protein and mRNA expression of PKG, VASP, and p-VASP were evaluated by Western blot and RT-PCR methods. Vascular EtD was assessed by using wire myography to determine endothelium-dependent vasorelaxation in isolated rat basilar artery (BA). Result. In cultured HBMECs, SCU (0.1, 1, and 10 μM) increased cell viability, mRNA, protein level, and phosphorylative activity of PKG and VASP against HR injury. In HR model of BA, SCU increased protein level of P-VASP. In rat CIR model, wire myography demonstrated that SCU (45 and 90 mg/kg, i.v.) significantly reduced ischemic size by partially restoring the endothelium dependent vasodilation of BA; PKG inhibitor Rp-8-Br-cGMPS (50 μg/kg, i.v.) reversed this protection of SCU in CIR rats. Conclusion. SCU protects against cerebral vascular EtD through endothelial PKG pathway activation.

Details

Title
Scutellarin Reduces Endothelium Dysfunction through the PKG-I Pathway
Author
Du, Xiaohua; Chen, Chen; Zhang, Min; Cai, Donghua; Sun, Jiaqi; Yang, Jian; Hu, Na; Ma, Congji; Zhang, Liyan; Zhang, Jun; Yang, Weimin
Publication year
2015
Publication date
2015
Publisher
John Wiley & Sons, Inc.
ISSN
1741427X
e-ISSN
17414288
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1728603933
Copyright
Copyright © 2015 Xiaohua Du et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.