It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This work assessed the impact of aerosol-cloud-radiation (ACR) interactions on U.S. regional ozone and PM2.5 using the NASA Unified Weather Research and Forecasting modeling system. A series of three-month simulations have been carried out for the year 2010, in which the factor separation method has been applied in order to isolate the contributions from aerosol-radiation (AR), aerosol-cloud (AC), and their synergistic effects. The overall ACR effects were to reduce the average cloud liquid water path by 25 g*m-2 (ca. 40% of the baseline) and to increase the downward shortwave radiation by 8 W*m-2 (ca. 3% of the baseline). The spatial difference in response to ACR was large, with ca. 50 W*m-2, 1 K, and 100 m increases in downward shortwave radiation, surface temperature, and planetary boundary layer height (PBLH), respectively, while ca. 60 g*m-2 decrease in cloud liquid water path in central Texas. The AC effect dominated for changes in downward shortwave radiation, cloud liquid water path, wind, and temperature, while both AC and AR effects contributed profoundly to PBLH change. As a result, surface ozone and PM2.5 changed with large temporal-spatial variations. More than a 10 ppbv of surface ozone and a 5 μg*m-3 of PM2.5 difference induced by ACR occurred frequently in the eastern U.S.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer