Full text

Turn on search term navigation

© 2015 Mrakic-Sposta et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Purpose

Aiming to gain a detailed insight into the physiological mechanisms involved under extreme conditions, a group of experienced ultra-marathon runners, performing the mountain Tor des Géants® ultra-marathon: 330 km trail-run in Valle d’Aosta, 24000 m of positive and negative elevation changes, was monitored. ROS production rate, antioxidant capacity, oxidative damage and inflammation markers were assessed, adopting micro-invasive analytic techniques.

Methods

Forty-six male athletes (45.04±8.75 yr, 72.6±8.4 kg, 1.76±0.05 m) were tested. Capillary blood and urine were collected before (Pre-), in the middle (Middle-) and immediately after (Post-) Race. Samples were analyzed for: Reactive Oxygen Species (ROS) production by Electron Paramagnetic Resonance; Antioxidant Capacity by Electrochemistry; oxidative damage (8-hydroxy-2-deoxy Guanosine: 8-OH-dG; 8-isoprostane: 8-isoPGF2α) and nitric oxide metabolites by enzymatic assays; inflammatory biomarkers (plasma and urine interleukin-6: IL-6-P and IL-6-U) by enzyme-linked immunosorbent assays (ELISA); Creatinine and Neopterin by HPLC, hematologic (lactate, glucose and hematocrit) and urine parameters by standard analyses.

Results

Twenty-five athletes finished the race, while twenty-one dropped out of it. A significant increase (Post-Race vs Pre) of the ROS production rate (2.20±0.27 vs 1.65±0.22 μmol.min-1), oxidative damage biomarkers (8-OH-dG: 6.32±2.38 vs 4.16±1.25 ng.mg-1 Creatinine and 8-isoPGF2α: 1404.0±518.30 vs 822.51±448.91 pg.mg-1Creatinine), inflammatory state (IL-6-P: 66.42±36.92 vs 1.29±0.54 pg.mL-1 and IL-6-U: 1.33±0.56 vs 0.71±0.17 pg.mL1) and lactate production (+190%), associated with a decrease of both antioxidant capacity (-7%) and renal function (i.e. Creatinine level +76%) was found.

Conclusions

The used micro-invasive analytic methods allowed us to perform most of them before, during and immediately after the race directly in the field, by passing the need of storing and transporting samples for further analysis. Considered altogether the investigated variables showed up that exhaustive and prolonged exercise not only promotes the generation of ROS but also induces oxidative stress, transient renal impairment and inflammation.

Details

Title
Effects of Mountain Ultra-Marathon Running on ROS Production and Oxidative Damage by Micro-Invasive Analytic Techniques
Author
Mrakic-Sposta, Simona; Gussoni, Maristella; Moretti, Sarah; Pratali, Lorenza; Giardini, Guido; Tacchini, Philippe; Dellanoce, Cinzia; Tonacci, Alessandro; Mastorci, Francesca; Borghini, Andrea; Montorsi, Michela; Vezzoli, Alessandra
First page
e0141780
Section
Research Article
Publication year
2015
Publication date
Nov 2015
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1730683379
Copyright
© 2015 Mrakic-Sposta et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.