Full Text

Turn on search term navigation

Copyright © 2015 Fernanda Marques da Cunha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Mitochondria are essential organelles for eukaryotic homeostasis. Although these organelles possess their own DNA, the vast majority (>99%) of mitochondrial proteins are encoded in the nucleus. This situation makes systems that allow the communication between mitochondria and the nucleus a requirement not only to coordinate mitochondrial protein synthesis during biogenesis but also to communicate eventual mitochondrial malfunctions, triggering compensatory responses in the nucleus. Mitochondria-to-nucleus retrograde signaling has been described in various organisms, albeit with differences in effector pathways, molecules, and outcomes, as discussed in this review.

Details

Title
Mitochondrial Retrograde Signaling: Triggers, Pathways, and Outcomes
Author
Fernanda Marques da Cunha; Nicole Quesada Torelli; Kowaltowski, Alicia J
Publication year
2015
Publication date
2015
Publisher
John Wiley & Sons, Inc.
ISSN
19420900
e-ISSN
19420994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1731737605
Copyright
Copyright © 2015 Fernanda Marques da Cunha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.