It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Quantifying the number and type of benthic classes that are able to be spectrally identified in shallow water remote sensing is important in understanding its potential for habitat mapping. Factors that impact the effectiveness of shallow water habitat mapping include water column turbidity, depth, sensor and environmental noise, spectral resolution of the sensor and spectral variability of the benthic classes. In this paper, we present a simple hierarchical clustering method coupled with a shallow water forward model to generate water-column specific spectral libraries. This technique requires no prior decision on the number of classes to output: the resultant classes are optically separable above the spectral noise introduced by the sensor, image based radiometric corrections, the benthos' natural spectral variability and the attenuating properties of a variable water column at depth. The modeling reveals the effect reducing the spectral resolution has on the number and type of classes that are optically distinct. We illustrate the potential of this clustering algorithm in an analysis of the conditions, including clustering accuracy, sensor spectral resolution and water column optical properties and depth that enabled the spectral distinction of the seagrass Amphibolis antartica from benthic algae.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer