Full text

Turn on search term navigation

Copyright © 2015 Heikki Hyyti and Arto Visala. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

An attitude estimation algorithm is developed using an adaptive extended Kalman filter for low-cost microelectromechanical-system (MEMS) triaxial accelerometers and gyroscopes, that is, inertial measurement units (IMUs). Although these MEMS sensors are relatively cheap, they give more inaccurate measurements than conventional high-quality gyroscopes and accelerometers. To be able to use these low-cost MEMS sensors with precision in all situations, a novel attitude estimation algorithm is proposed for fusing triaxial gyroscope and accelerometer measurements. An extended Kalman filter is implemented to estimate attitude in direction cosine matrix (DCM) formation and to calibrate gyroscope biases online. We use a variable measurement covariance for acceleration measurements to ensure robustness against temporary nongravitational accelerations, which usually induce errors when estimating attitude with ordinary algorithms. The proposed algorithm enables accurate gyroscope online calibration by using only a triaxial gyroscope and accelerometer. It outperforms comparable state-of-the-art algorithms in those cases when there are either biases in the gyroscope measurements or large temporary nongravitational accelerations present. A low-cost, temperature-based calibration method is also discussed for initially calibrating gyroscope and acceleration sensors. An open source implementation of the algorithm is also available.

Details

Title
A DCM Based Attitude Estimation Algorithm for Low-Cost MEMS IMUs
Author
Hyyti, Heikki; Visala, Arto
Publication year
2015
Publication date
2015
Publisher
Hindawi Limited
ISSN
16875990
e-ISSN
16876008
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1748554232
Copyright
Copyright © 2015 Heikki Hyyti and Arto Visala. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.