It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Airborne Laser Scanning (ALS) metrics have been used to develop area-based forest inventories; these metrics generally include estimates of stand-level, per hectare values and mean tree attributes. Tree-based ALS inventories contain desirable information on individual tree dimensions and how much they vary within a stand. Adding size class distribution information to area-based inventories helps to bridge the gap between area- and tree-based inventories. This study examines the potential of ALS and stereo-imagery point clouds to predict size class distributions in a boreal forest. With an accurate digital terrain model, both ALS and imagery point clouds can be used to estimate size class distributions with comparable accuracy. Nonparametric imputations were generally superior to parametric imputations; this may be related to the limitation of using a unimodal Weibull function on a relatively small prediction unit (e.g., 400 m2).
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer