Full text

Turn on search term navigation

Copyright © 2015 Zhong-jie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Mining frequent item set (FI) is an important issue in data mining. Considering the limitations of those exact algorithms and sampling methods, a novel FI mining algorithm based on granular computing and fuzzy set theory (FI-GF) is proposed, which mines those datasets with high number of transactions more efficiently. Firstly, the granularity is applied, which compresses the transactions to some granules for reducing the scanning cost. During the granularity, each granule is represented by a fuzzy set, and the transaction scale represented by a granule is optimized. Then, fuzzy set theory is used to compute the supports of item sets based on those granules, which faces the uncertainty brought by the granularity and ensures the accuracy of the final results. Finally, Apriori is applied to get the FIs based on those granules and the new computing way of supports. Through five datasets, FI-GF is compared with the original Apriori to prove its reliability and efficiency and is compared with a representative progressive sampling way, RC-SS, to prove the advantage of the granularity to the sampling method. Results show that FI-GF not only successfully saves the time cost by scanning transactions but also has the high reliability. Meanwhile, the granularity has advantages to those progressive sampling methods.

Details

Title
FI-FG: Frequent Item Sets Mining from Datasets with High Number of Transactions by Granular Computing and Fuzzy Set Theory
Author
Zhong-jie, Zhang; Huang, Jian; Wei, Ying
Publication year
2015
Publication date
2015
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1750365103
Copyright
Copyright © 2015 Zhong-jie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.