It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Traditional single-lens vertical photogrammetry can obtain object images from the air with rare lateral information of tall buildings. Multi-view airborne photogrammetry can get rich lateral texture of buildings, while the common area-based matching for oblique images may lose efficacy because of serious geometric distortion. A hierarchical dense matching algorithm is put forward here to match two oblique airborne images of different perspectives. Based on image hierarchical strategy and matching constraints, this algorithm delivers matching results from the upper layer of the pyramid to the below and implements per-pixel dense matching in the local Delaunay triangles between the original images. Experimental results show that the algorithm can effectively overcome the geometric distortion between different perspectives and achieve pixel-level dense matching entirely based on the image space.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer