Full text

Turn on search term navigation

Copyright © 2016 Jianxing Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In order to research the vibroimpact characteristics of a planetary gear transmission system under high speed and lightly loaded conditions, a new modeling method is proposed. In the modeling process, linear spring was used to simulate gear mesh elasticity under heavy load cases, and Hertz contact theory was used to calculate the contact force of gear pair under light load cases. Then, effects of the working conditions on the system vibroimpact characteristics are analyzed. The results show that, with input speed growing, the mesh force produced obvious fluctuations on the resonance frequencies of the sun gear and carrier torsion vibration, ring gear's transverse vibration under the heavy load. Under light load condition, the collision vibration occurs in the gear pair; the changing trend of the contact force shows strongly nonlinear characteristics. The time of mesh-apart in gears pair decreases gradually as the load is increased; until it reaches collision vibration threshold value, the gear pair is no longer mesh-apart. With increasing of the input speed, the time of mesh-apart is decreased gradually; the fluctuation amplitude of contact force shows a linearly increasing trend. The study provides useful theoretical guideline for planetary gear transmission low-noise design.

Details

Title
Nonlinear Vibroimpact Characteristics of a Planetary Gear Transmission System
Author
Zhou, Jianxing; Sun, Wenlei; Liang, Yuan
Publication year
2016
Publication date
2016
Publisher
John Wiley & Sons, Inc.
ISSN
10709622
e-ISSN
18759203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1757627503
Copyright
Copyright © 2016 Jianxing Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.