Abstract

Percutaneous transmyocardial laser revasculariztion (PMLR), a kind of new percutaneous coronary intervention based on transmyocardial laser revascularization (TMLR) is to improve the circulation of ischemia myocardium by laser myocardial revascularization from the cardiac cavity. In our previous research, the characteristic of laser transmission in myocardium including photon reflection, absorption and scattering was introduced. The photon state at the emission, transmission and disappearance stage, the processes of photon weight decay and the change of photon movement step and direction were described and simulated by using Monte Carlo method. All of the above were simulated by MATLAB, and the relationship between different optical property parameters, absorption coefficient, scattering coefficient, anisotropic coefficient, and photon energy density in myocardium was discussed. In this study simulation of photon transport using Monte Carlo operating platform was programmed by C++ language to investigate the influence of increasing photons on the simulation at different optical properties parameters and clinical intelligent PMLR operating platform was established to achieve the optimal number of laser holes, aperture, single hole perfusion, threshold power and corresponding parameters of each hole, which provided a reference for the operation program.

Details

Title
Design of clinical intelligent percutaneous myocardial laser revascularization operating platform software
Author
Han, Lina; Guo, Shuli; Xu, Wenhuan
Section
Computer information technology and application
Publication year
2016
Publication date
2016
Publisher
EDP Sciences
ISSN
22747214
e-ISSN
2261236X
Source type
Conference Paper
Language of publication
English
ProQuest document ID
1761136257
Copyright
© 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.