Full text

Turn on search term navigation

Copyright © 2016 Hyun-ju Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

It has been demonstrated that immobilization (IMO) stress affects neuroimmune systems followed by alterations of physiology and behavior. Interleukin-4 (IL-4), an anti-inflammatory cytokine, is known to regulate inflammation caused by immune challenge but the effect of IMO on modulation of IL-4 expression in the brain has not been assessed yet. Here, it was demonstrated that IL-4 was produced by noradrenergic neurons in the locus coeruleus (LC) of the brain and release of IL-4 was reduced in response to IMO. It was observed that IMO groups were more anxious than nontreated groups. Acute IMO (2 h/day, once) stimulated secretion of plasma corticosterone and tyrosine hydroxylase (TH) in the LC whereas these increments were diminished in exposure to chronic stress (2 h/day, 21 consecutive days). Glucocorticoid receptor (GR), TH, and IL-4-expressing cells were localized in identical neurons of the LC, indicating that hypothalamic-pituitary-adrenal- (HPA-) axis and sympathetic-adrenal-medullary- (SAM-) axis might be involved in IL-4 secretion in the stress response. Accordingly, it was concluded that stress-induced decline of IL-4 concentration from LC neurons may be related to anxiety-like behavior and an inverse relationship exists between IL-4 secretion and HPA/SAM-axes activation.

Details

Title
Decreased Interleukin-4 Release from the Neurons of the Locus Coeruleus in Response to Immobilization Stress
Author
Hyun-ju, Lee; Hyun-Jung, Park; Starkweather, Angela; An, Kyungeh; Shim, Insop
Publication year
2016
Publication date
2016
Publisher
John Wiley & Sons, Inc.
ISSN
09629351
e-ISSN
14661861
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1761402607
Copyright
Copyright © 2016 Hyun-ju Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.