It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The primary purpose of this paper was to present an efficient method to implement the layout design of multi-component systems. In this study, two kinds of design variables: topology variables and geometry variables are simultaneously optimized to maximize the structure stiffness. The multi-point constraints (MPC) are used to simulate the connection behavior between these movable components and supporting structure. So during the optimization iterations, mesh regeneration caused by moving components is avoided compared to the linkage of nodal coincidence. At the same time, the precise geometry shapes and properties of components are maintained to reduce the model building error. At the last of the paper, the numerical example is presented to show the validity of this method.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer