Full text

Turn on search term navigation

Copyright Nature Publishing Group Feb 2016

Abstract

In the hole-doped cuprates, a small number of carriers suppresses antiferromagnetism and induces superconductivity. In the electron-doped cuprates, on the other hand, superconductivity appears only in a narrow window of high-doped Ce concentration after reduction annealing, and strong antiferromagnetic correlation persists in the superconducting phase. Recently, Pr1.3-x La0.7 Cex CuO4 (PLCCO) bulk single crystals annealed by a protect annealing method showed a high critical temperature of around 27 K for small Ce content down to 0.05. Here, by angle-resolved photoemission spectroscopy measurements of PLCCO crystals, we observed a sharp quasi-particle peak on the entire Fermi surface without signature of an antiferromagnetic pseudogap unlike all the previous work, indicating a dramatic reduction of antiferromagnetic correlation length and/or of magnetic moments. The superconducting state was found to extend over a wide electron concentration range. The present results fundamentally challenge the long-standing picture on the electronic structure in the electron-doped regime.

Details

Title
Suppression of the antiferromagnetic pseudogap in the electron-doped high-temperature superconductor by protect annealing
Author
Horio, M; Adachi, T; Mori, Y; Takahashi, A; Yoshida, T; Suzuki, H; Ambolode, L C C, Ii; Okazaki, K; Ono, K; Kumigashira, H; Anzai, H; Arita, M; Namatame, H; Taniguchi, M; Ootsuki, D; Sawada, K; Takahashi, M; Mizokawa, T; Koike, Y; Fujimori, A
Pages
10567
Publication year
2016
Publication date
Feb 2016
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1762368488
Copyright
Copyright Nature Publishing Group Feb 2016