Full text

Turn on search term navigation

Copyright Nature Publishing Group Feb 2016

Abstract

Hotspot mutations in the spliceosome gene SF3B1 are reported in ∼20% of uveal melanomas. SF3B1 is involved in 3'-splice site (3'ss) recognition during RNA splicing; however, the molecular mechanisms of its mutation have remained unclear. Here we show, using RNA-Seq analyses of uveal melanoma, that the SF3B1R625/K666 mutation results in deregulated splicing at a subset of junctions, mostly by the use of alternative 3'ss. Modelling the differential junctions in SF3B1WT and SF3B1R625/K666 cell lines demonstrates that the deregulated splice pattern strictly depends on SF3B1 status and on the 3'ss-sequence context. SF3B1WT knockdown or overexpression do not reproduce the SF3B1R625/K666 splice pattern, qualifying SF3B1R625/K666 as change-of-function mutants. Mutagenesis of predicted branchpoints reveals that the SF3B1R625/K666 -promoted splice pattern is a direct result of alternative branchpoint usage. Altogether, this study provides a better understanding of the mechanisms underlying splicing alterations induced by mutant SF3B1 in cancer, and reveals a role for alternative branchpoints in disease.

Details

Title
Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage
Author
Alsafadi, Samar; Houy, Alexandre; Battistella, Aude; Popova, Tatiana; Wassef, Michel; Henry, Emilie; Tirode, Franck; Constantinou, Angelos; Piperno-neumann, Sophie; Roman-roman, Sergio; Dutertre, Martin; Stern, Marc-henri
Pages
10615
Publication year
2016
Publication date
Feb 2016
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1762406801
Copyright
Copyright Nature Publishing Group Feb 2016