It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
One natural and successful technique to have retrieved documents that is relevant to users' intention is by expanding the original query with other words that best capture the goal of users. However, no matter the means implored on the clustered document while expanding the user queries, only a concept driven document clustering technique has better capacity to spawn results with conceptual relevance to the users' goal. Therefore, this research extends the Concept Based Thesaurus Network document clustering techniques by using the Latent Semantic Analysis tool to identify the Best Fit Concept Based Document Cluster in the network. The Fuzzy Latent Semantic Query Expansion Model process achieved a better precision and recall rate values on experimentation and evaluations when compared with some existing information retrieval approaches.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





