Full text

Turn on search term navigation

Copyright © 2016 Sin-Yeang Teow et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Nanometre-sized vesicles, also known as exosomes, are derived from endosomes of diverse cell types and present in multiple biological fluids. Depending on their cellular origins, the membrane-bound exosomes packed a variety of functional proteins and RNA species. These microvesicles are secreted into the extracellular space to facilitate intercellular communication. Collective findings demonstrated that exosomes from HIV-infected subjects share many commonalities with Human Immunodeficiency Virus Type I (HIV-1) particles in terms of proteomics and lipid profiles. These observations postulated that HIV-resembled exosomes may contribute to HIV pathogenesis. Interestingly, recent reports illustrated that exosomes from body fluids could inhibit HIV infection, which then bring up a new paradigm for HIV/AIDS therapy. Accumulative findings suggested that the cellular origin of exosomes may define their effects towards HIV-1. This review summarizes the two distinctive roles of exosomes in regulating HIV pathogenesis. We also highlighted several additional factors that govern the exosomal functions. Deeper understanding on how exosomes promote or abate HIV infection can significantly contribute to the development of new and potent antiviral therapeutic strategy and vaccine designs.

Details

Title
Exosomes in Human Immunodeficiency Virus Type I Pathogenesis: Threat or Opportunity?
Author
Sin-Yeang Teow; Alif Che Nordin; Ali, Syed A; Khoo, Alan Soo-Beng
Publication year
2016
Publication date
2016
Publisher
John Wiley & Sons, Inc.
ISSN
16878639
e-ISSN
16878647
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1770816669
Copyright
Copyright © 2016 Sin-Yeang Teow et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.