It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Pain intensities of patients are repeatedly measured by Visual Analog Scale (VAS) and Pain Vision (PV) in a clinical research. Two measurements by VAS and PV are performed at the same time. In order to evaluate within patient consistency, intra-individual coefficient of variations (CVs) are compared between measures assuming that the pain status of each patient is stable during the research period. The correlated samples and different inter-individual variation due to different scales of the measures should be taken into account in statistical analysis. The adjustment of covariates will improve the estimation of population mean values of the measures.
Methods
In this paper, statistical approach to compare the intra-individual CVs is proposed. The approach consists of two steps: (1) estimating population mean values and intra-individual variances of the pain intensities by measure in a mixed effect model framework, (2) computing intra-individual CVs and comparing them between measures. The mixed effect model includes measure and some variables as fixed effects and subject by measure as a random effect. The different inter-individual variations between measures and their covariance reflect the paired sampling in the variance component. The confidence interval of the difference of intra-individual CVs is constructed using the asymptotic normality and the delta method. Bootstrap method is available if sample size is small.
Results
The proposed approach is illustrated using pain research data. Measure (VAS and PV), age and sex are included in the model as fixed effects. The confidence intervals of the difference of intra-individual CVs between measures are estimated by the asymptotic theory and by bootstrap using a subgroup resampling, respectively. Both confidence intervals are similar.
Conclusion
The proposed approach is useful to compare two intra-individual CVs taking it into account to reflect the paired sampling, different inter-individual variations between measures and some covariates. Although the inclusion of covariates did not improve the goodness-of-fit in the illustration, the proposed model with covariates will improve the accuracy and/or precision if covariates truly influence response variable. This approach can be applicable with small modification to various situations.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer