Full text

Turn on search term navigation

Copyright © 2016 Huyen Thanh Pham et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We have demonstrated a method for using proper models of pentacene P-channel and fullerene N-channel thin-film transistors (TFTs) in order to design and simulate organic integrated circuits. Initially, the transistors were fabricated, and we measured their main physical and electrical parameters. Then, these organic TFTs (OTFTs) were modeled with support of an organic process design kit (OPDK) added in Cadence. The key specifications of the modeled elements were extracted from measured data, whereas the fitting ones were elected to replicate experimental curves. The simulating process proves that frequency responses of the TFTs cover all biosignal frequency ranges; hence, it is reasonable to deploy the elements to design integrated circuits used in biomedical applications. Complying with complementary rules, the organic circuits work properly, including logic gates, flip-flops, comparators, and analog-to-digital converters (ADCs) as well. The proposed successive-approximation-register (SAR) ADC consumes a power of 883.7 µW and achieves an ENOB of 5.05 bits, a SNR of 32.17 dB at a supply voltage of 10 V, and a sampling frequency of about 2 KHz.

Details

Title
Design and Simulation of a 6-Bit Successive-Approximation ADC Using Modeled Organic Thin-Film Transistors
Author
Huyen Thanh Pham; Thang Vu Nguyen; Pham-Nguyen, Loan; Sakai, Heisuke; Toan Thanh Dao
Publication year
2016
Publication date
2016
Publisher
John Wiley & Sons, Inc.
ISSN
08827516
e-ISSN
15635031
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1776060077
Copyright
Copyright © 2016 Huyen Thanh Pham et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.