Comment on "Optimal Exposure Biomarkers for Nonpersistent Chemicals in Environmental Epidemiology"
Richard W. Stahlhut, Richard B. van Breemen, Roy R. Gerona, Julia A. Taylor, Wade V. Welshons, and Frederick S. vom Saal
We appreciate the opportunity to respond to the letter from Stahlhut et al. regarding our Brief Communication. We stressed the importance of biospecimen integrity and the potential danger of unrecognized contamination of convenience samples, particularly with ubiquitous environmental chemicals such as bisphenol A (BPA) and phthalates.
We did not discuss the important area of experimental research and specifically pharmacokinetic studies, although we based our argument partly on knowledge of concentration changes in various compartments postexposure. We agree that information from pharmacokinetic models is quite valuable and note that experimental studies that use isotope-labeled materials are not susceptible to extraneous contamination. Such experimental studies do not support using polar metabolites, such as unmetabolized BPA, as biomarkers in epidemiologic studies (Thayer et al. 2015). For example, even in situations that may result in exposures higher than background levels, such as handling cash register receipts, BPA serum concentrations are below or near the detection limit and much lower than urinary concentrations (Thayer et al. 2016).
The figure in our Brief Communication revealed the sharp increase in the number of publications using blood-based polar biomarkers over the past 15 years, especially etiologic studies. Our main point was that urine is the most dependable biomonitoring matrix for population research, a position that Stahlhut et al. also support in their letter.
Target-organ dose may inform biological models, but measuring this dose is not always possible, although it can be inferred from pharmacokinetic studies. For environmental epidemiology, reliable measurements in urine can be used to quantify exposures.
A suitable exposure biomarker involves more than detecting the analyte with precise and accurate methods. For pervasive chemicals and particularly for archived samples, specimen integrity must be confirmed. This is true for any matrix, including urine (Guidry et al. 2015; Koch et al. 2012), to ensure valid results.
Guidry VT, Longnecker MP, Aase H, Eggesbo M, Zeiner P, Reichborn-Kjennerud T, et al. 2015. Measurement of total and free urinary phenol and paraben concentrations over the course of pregnancy: assessing reliability and contamination of specimens in the Norwegian Mother and Child Cohort Study. Environ Health Perspect 123(7):705-711, doi: 10.1289/ehp.1408325.
Koch HM, Kolossa-Gehring M, Schroter-Kermani C, Angerer J, Bruning T. 2012. Bisphenol A in 24 h urine and plasma samples of the German Environmental Specimen Bank from 1995 to 2009: a retrospective exposure evaluation. J Expos Sci Environ Epidemiol 22(6):610-616, doi: 10.1038/jes.2012.39.
Thayer KA, Doerge DR, Hunt D, Schurman SH, Twaddle NC, Churchwell MI, et al. 2015. Pharmacokinetics of bisphenol A in humans following a single oral administration. Environ Int 83:107-115, doi: 10.1016/j.envint.2015.06.008.
Thayer KA, Taylor KW, Garantziotis S, Schurman S, Kissling GE, Hunt D, et al. 2016. Bisphenol A, bisphenol S, and 4-hydroxyphenyl 4-isoprooxyphenylsulfone (BPSIP) in urine and blood of cashiers. Environ Health Perspect 124(4):437-444, doi: 10.1289/ehp.1409427.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright National Institute of Environmental Health Sciences Apr 2016
Abstract
[...]even in situations that may result in exposures higher than background levels, such as handling cash register receipts, BPA serum concentrations are below or near the detection limit and much lower than urinary concentrations (Thayer et al. 2016).
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer