It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Williams-Beuren Syndrome (WBS) is caused by the microdeletion of approximately 25 genes on chromosome 7q11.23, and is characterized by a spectrum of cognitive and behavioural features.
Results
We generated cortical neurons from a WBS individual and unaffected (WT) control by directed differentiation of induced pluripotent stem cells (iPSCs). Single cell mRNA analyses and immunostaining demonstrated very efficient production of differentiated cells expressing markers of mature neurons of mixed subtypes and from multiple cortical layers. We found that there was a profound alteration in action potentials, with significantly prolonged WBS repolarization times and a WBS deficit in voltage-activated K+ currents. Miniature excitatory synaptic currents were normal, indicating that unitary excitatory synaptic transmission was not altered. Gene expression profiling identified 136 negatively enriched gene sets in WBS compared to WT neurons including gene sets involved in neurotransmitter receptor activity, synaptic assembly, and potassium channel complexes.
Conclusions
Our findings provide insight into gene dysregulation and electrophysiological defects in WBS patient neurons.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer