Abstract

Background

In breast cancer, progesterone receptor (PR) positivity or abundance is positively associated with survival and treatment response. It was initially believed that PR was a useful diagnostic marker of estrogen receptor activity, but increasingly PR has been recognised to play an important biological role in breast homeostasis, carcinogenesis and metastasis. Although PR expression is almost exclusively observed in estrogen receptor positive tumors, few studies have investigated the cellular mechanisms of PR action in the context of ongoing estrogen signalling.

Methods

In this study, we contrast PR function in estrogen pretreated ZR-75-1 breast cancer cells with vehicle treated ZR-75-1 and T-47D breast cancer cells using expression microarrays and chromatin immunoprecipitation-sequencing.

Results

Estrogen cotreatment caused a dramatic increase in the number of genes regulated by progesterone in ZR-75-1 cells. In T-47D cells that have naturally high levels of PR, estrogen and progesterone cotreatment resulted in a reduction in the number of regulated genes in comparison to treatment with either hormone alone. At a genome level, estrogen pretreatment of ZR-75-1 cells led to a 10-fold increase in the number of PR DNA binding sites detected using ChIP-sequencing. Time course assessment of progesterone regulated genes in the context of estrogen pretreatment highlighted a series of important regulatory pathways, including those driven by epithelial growth factor receptor (EGFR). Importantly, progesterone applied to cells pretreated with estradiol resulted in switching of the PAM50-determined intrinsic breast cancer subtype from Luminal A to Basal-like, and increased the Oncotype DX® Unscaled Recurrence Score.

Conclusion

Estrogen pretreatment of breast cancer cells increases PR steady state levels, resulting in an unequivocal progesterone response that upregulates key members of growth factor pathways. The transformative changes progesterone exerts on the breast cancer subtype suggest that these subtyping tools should be used with caution in premenopausal women.

Details

Title
The unique transcriptional response produced by concurrent estrogen and progesterone treatment in breast cancer cells results in upregulation of growth factor pathways and switching from a Luminal A to a Basal-like subtype
Author
Need, Eleanor F; Selth, Luke A; Trotta, Andrew P; Leach, Damien A; Giorgio, Lauren; OLoughlin, Melissa A; Smith, Eric; Gill, Peter G; Ingman, Wendy V; Graham, J Dinny; Buchanan, Grant
Publication year
2015
Publication date
2015
Publisher
BioMed Central
e-ISSN
14712407
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1779824805
Copyright
Copyright BioMed Central 2015