Abstract

Background

The ozone challenge model can be used to assess the efficacy of anti-inflammatory compounds in early phases of clinical drug development. PUR118, a calcium salt based formulation engineered in the iSPERSETM dry powder delivery technology, is a novel anti-inflammatory drug for COPD. Here we evaluated the efficacy and safety of three doses of PUR118 in attenuating ozone-induced airway inflammation in healthy volunteers.

Methods

In a single-blind, phase 1B proof of concept study, 24 subjects were enrolled to sequentially receive three doses of PUR118 (5.5 mg, n = 18; 11.0 mg, n = 18; 2.8 mg, n = 16). Each dose was inhaled 3 times (1, 13, 25 h, preceded by 2 puffs salbutamol) before the ozone exposure (250 ppb, 3 h intermittent exercise). Sputum was induced 3 h after the end of exposure.

Results

Sputum neutrophils, sputum CD14+ cells, as well as concentrations of IL1B, IL6, IL8, MMP9, and TNFA in sputum supernatant significantly increased after ozone exposure (n = 24). The percentage of sputum neutrophils (n = 12 who completed all treatments) did not change following treatment with different doses of PUR118. The high dose treatment group (n = 16) showed a decrease in the percentage and number of sputum macrophages (p ≤ 0.05) as well as a decrease in blood neutrophils (p = 0.04), and an increase in blood CD14 + cells (p = 0.04) compared to baseline. All dosages of PUR118 were safe and well tolerated.

Conclusion

Ozone challenge resulted in the expected and significant increase of sputum inflammatory parameters. Treatment with multiple rising doses of PUR118 was safe and three applications within 25 h prior to the ozone challenge had small effects on ozone-induced airway inflammation.

Details

Title
Efficacy and safety of inhaled calcium lactate PUR118 in the ozone challenge model - a clinical trial
Author
Holz, Olaf; Biller, H; Mueller, M; Kane, K; Rosano, M; Hanrahan, J; Hava, D L; Hohlfeld, J M
Publication year
2015
Publication date
2015
Publisher
BioMed Central
e-ISSN
20506511
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1780305109
Copyright
Copyright BioMed Central 2015