It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Bone is the most common site of breast cancer distant metastasis, affecting 50-70 % of patients who develop metastatic disease. Despite decades of informative research, the effective prevention, prediction and treatment of these lesions remains elusive. The Breast Cancer to Bone (B2B) Metastases Research Program consists of a prospective cohort of incident breast cancer patients and four sub-projects that are investigating priority areas in breast cancer bone metastases. These include the impact of lifestyle factors and inflammation on risk of bone metastases, the gene expression features of the primary tumour, the potential role for metabolomics in early detection of bone metastatic disease and the signalling pathways that drive the metastatic lesions in the bone.
Methods/Design
The B2B Research Program is enrolling a prospective cohort of 600 newly diagnosed, incident, stage I-IIIc breast cancer survivors in Alberta, Canada over a five year period. At baseline, pre-treatment/surgery blood samples are collected and detailed epidemiologic data is collected by in-person interview and self-administered questionnaires. Additional self-administered questionnaires and blood samples are completed at specified follow-up intervals (24, 48 and 72 months). Vital status is obtained prior to each follow-up through record linkages with the Alberta Cancer Registry. Recurrences are identified through medical chart abstractions. Each of the four projects applies specific methods and analyses to assess the impact of serum vitamin D and cytokine concentrations, tumour transcript and protein expression, serum metabolomic profiles and in vitro cell signalling on breast cancer bone metastases.
Discussion
The B2B Research Program will address key issues in breast cancer bone metastases including the association between lifestyle factors (particularly a comprehensive assessment of vitamin D status) inflammation and bone metastases, the significance or primary tumour gene expression in tissue tropism, the potential of metabolomic profiles for risk assessment and early detection and the signalling pathways controlling the metastatic tumour microenvironment. There is substantial synergy between the four projects and it is hoped that this integrated program of research will advance our understanding of key aspects of bone metastases from breast cancer to improve the prevention, prediction, detection, and treatment of these lesions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer