It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Based on an optimal estimation method, an algorithm was developed to retrieve the column-averaged dry-air mole fraction of carbon dioxide (XCO2) using Shortwave Infrared (SWIR) channels, referred to as the Yonsei CArbon Retrieval (YCAR) algorithm. The performance of the YCAR algorithm is here examined using simulated radiance spectra, with simulations conducted using different Aerosol Optical Depths (AODs), Solar Zenith Angles (SZAs) and aerosol types over various surface types. To characterize the XCO2 retrieval algorithm, reference tests using simulated spectra were analysed through a posteriori XCO2 retrieval errors and averaging kernels. The a posteriori XCO2 retrieval errors generally increase with increasing SZA. However, errors were found to be small (<1.3 ppm) over vegetation surfaces. Column averaging kernels are generally close to unity near the surface and decrease with increasing altitude. For dust aerosol with an AOD of 0.3, the retrieval loses its sensitivity near the surface due to the influence of atmospheric scattering, with the peak of column averaging kernels at ~800 hPa. In addition, we performed a sensitivity analysis of the principal state vector elements with respect to XCO2 retrievals. The reference tests with the inherent error of the algorithm showed that overall XCO2 retrievals work reasonably well. The XCO2 retrieval errors with respect to state vector elements are shown to be <0.3 ppm. Information on aerosol optical properties is the most important factor affecting the XCO2 retrieval algorithm. Incorrect information on the aerosol type can lead to significant errors in XCO2 retrievals of up to 2.5 ppm. The XCO2 retrievals using the Thermal and Near-infrared Sensor for carbon Observation (TANSO)-Fourier Transform Spectrometer (FTS) L1B spectra were biased by 2.78 ± 1.46 ppm and 1.06 ± 0.85 ppm at the Saga and Tsukuba sites, respectively. This study provides important information regarding estimations of the effects of aerosol properties on the CO2 retrieval algorithm. An understanding of these effects can contribute to improvements in the accuracy of XCO2 retrievals, especially combined with an aerosol retrieval algorithm.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer