It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson's disease. It is also used to observe the effects of medication and rehabilitation. The methodology presented in this paper enables the detection of selected gait attributes by Microsoft (MS) Kinect image and depth sensors to track movements in three-dimensional space.
Methods
The experimental part of the paper is devoted to the study of three sets of individuals: 18 patients with Parkinson's disease, 18 healthy aged-matched individuals, and 15 students. The methodological part of the paper includes the use of digital signal-processing methods for rejecting gross data-acquisition errors, segmenting video frames, and extracting gait features. The proposed algorithm describes methods for estimating the leg length, normalised average stride length (SL), and gait velocity (GV) of the individuals in the given sets using MS Kinect data.
Results
The main objective of this work involves the recognition of selected gait disorders in both the clinical and everyday settings. The results obtained include an evaluation of leg lengths, with a mean difference of 0.004 m in the complete set of 51 individuals studied, and of the gait features of patients with Parkinson's disease (SL: 0.38 m, GV: 0.61 m/s) and an age-matched reference set (SL: 0.54 m, GV: 0.81 m/s). Combining both features allowed for the use of neural networks to classify and evaluate the selectivity, specificity, and accuracy. The achieved accuracy was 97.2 %, which suggests the potential use of MS Kinect image and depth sensors for these applications.
Conclusions
Discussion points include the possibility of using the MS Kinect sensors as inexpensive replacements for complex multi-camera systems and treadmill walking in gait-feature detection for the recognition of selected gait disorders.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer