It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Gliomas are the most common types of primary brain tumors in the adult central nervous system. TMEM140 is identified as an amplified gene in the human gastric cancer genome. However, the function of TMEM140 in gliomas has not been thoroughly elucidated. The aim of the current study was to determine the clinical significance of TMEM140 expression in patients with gliomas and its effect on tumor cell malignant phenotypes.
Methods
Immunohistochemical analysis and real-time reverse transcription PCR were performed to detect the expression levels of TMEM140 in 70 glioma brain tissue samples. Next, the correlation between the TMEM140 expression levels and the clinical characteristics and outcomes of glioma patients was statistically analyzed. TMEM140 expression was inhibited in two glioma cell lines (i.e., U87 and U373) using a knockdown method with small interfering RNA. Cell Counting Kit-8 and Transwell assays were used to investigate TMEM140 function during cell proliferation, invasion, and migration, respectively. Using flow cytometry and Western blot analysis, we subsequently determined the cell cycle and apoptosis profile of the TMEM140-silenced cells.
Results
TMEM140 protein expression was significantly higher in gliomas than in normal brain tissues (p < 0.0001). TMEM140 overexpression was strongly correlated with tumor size, histologic grade, and overall survival time (P < 0.05). TMEM140 decreased cell viability in vitro and dramatically decreased tumor volume in vivo. This phenomenon might be caused by G1 phase cell cycle arrest and cell apoptosis. TMEM140 silencing could suppress the viability, migration, and invasion of glioma cells.
Conclusions
Our results suggest that TMEM140 expression is a prognostic factor that might play an important role in the viability, migration, and invasion of glioma cells. This study highlights the importance of TMEM140 as a novel prognostic marker and as an attractive therapeutic target for gliomas.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer