Full Text

Turn on search term navigation

Copyright Nature Publishing Group Apr 2016

Abstract

During cerebral development, many types of neurons are sequentially generated by self-renewing progenitor cells called apical progenitors (APs). Temporal changes in AP identity are thought to be responsible for neuronal diversity; however, the mechanisms underlying such changes remain largely unknown. Here we perform single-cell transcriptome analysis of individual progenitors at different developmental stages, and identify a subset of genes whose expression changes over time but is independent of differentiation status. Surprisingly, the pattern of changes in the expression of such temporal-axis genes in APs is unaffected by cell-cycle arrest. Consistent with this, transient cell-cycle arrest of APs in vivo does not prevent descendant neurons from acquiring their correct laminar fates. Analysis of cultured APs reveals that transitions in AP gene expression are driven by both cell-intrinsic and -extrinsic mechanisms. These results suggest that the timing mechanisms controlling AP temporal identity function independently of cell-cycle progression and Notch activation mode.

Details

Title
Cell-cycle-independent transitions in temporal identity of mammalian neural progenitor cells
Author
Okamoto, Mayumi; Miyata, Takaki; Konno, Daijiro; Ueda, Hiroki R; Kasukawa, Takeya; Hashimoto, Mitsuhiro; Matsuzaki, Fumio; Kawaguchi, Ayano
Pages
11349
Publication year
2016
Publication date
Apr 2016
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1782205421
Copyright
Copyright Nature Publishing Group Apr 2016