Full text

Turn on search term navigation

Copyright Nature Publishing Group Apr 2016

Abstract

Controlling the propagation and coupling of light to sub-wavelength antennas is a crucial prerequisite for many nanoscale optical devices. Recently, the main focus of attention has been directed towards high-refractive-index materials such as silicon as an integral part of the antenna design. This development is motivated by the rich spectral properties of individual high-refractive-index nanoparticles. Here we take advantage of the interference of their magnetic and electric resonances to achieve strong lateral directionality. For controlled excitation of a spherical silicon nanoantenna, we use tightly focused radially polarized light. The resultant directional emission depends on the antenna's position relative to the focus. This approach finds application as a novel position sensing technique, which might be implemented in modern nanometrology and super-resolution microscopy set-ups. We demonstrate in a proof-of-concept experiment that a lateral resolution in the Ångström regime can be achieved.

Details

Title
Polarization-controlled directional scattering for nanoscopic position sensing
Author
Neugebauer, Martin; Wozniak, Pawel; Bag, Ankan; Leuchs, Gerd; Banzer, Peter
Pages
11286
Publication year
2016
Publication date
Apr 2016
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1782223196
Copyright
Copyright Nature Publishing Group Apr 2016