Full text

Turn on search term navigation

Copyright © 2016 Jinfeng Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Finger-based personal identification has become an active research topic in recent years because of its high user acceptance and convenience. How to reliably and effectively fuse the multimodal finger features together, however, has still been a challenging problem in practice. In this paper, viewing the finger trait as the combination of a fingerprint, finger vein, and finger-knuckle-print, a new multimodal finger feature recognition scheme is proposed based on granular computing. First, the ridge texture features of FP, FV, and FKP are extracted using Gabor Ordinal Measures (GOM). Second, combining the three-modal GOM feature maps in a color-based manner, we then constitute the original feature object set of a finger. To represent finger features effectively, they are granulated at three levels of feature granules (FGs) in a bottom-up manner based on spatial circular granulation. In order to test the performance of the multilevel FGs, a top-down matching method is proposed. Experimental results show that the proposed method achieves higher accuracy recognition rate in finger feature recognition.

Details

Title
Spatial Circular Granulation Method Based on Multimodal Finger Feature
Author
Yang, Jinfeng; Zhong, Zhen; Jia, Guimin; Li, Yanan
Publication year
2016
Publication date
2016
Publisher
John Wiley & Sons, Inc.
ISSN
20900147
e-ISSN
20900155
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1783870756
Copyright
Copyright © 2016 Jinfeng Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.