Full Text

Turn on search term navigation

Copyright Nature Publishing Group Apr 2016

Abstract

Lipids and proteins are organized in cellular membranes in clusters, often called 'lipid rafts'. Although raft-constituent ordered lipid domains are thought to be energetically unfavourable for membrane fusion, rafts have long been implicated in many biological fusion processes. For the case of HIV gp41-mediated membrane fusion, this apparent contradiction can be resolved by recognizing that the interfaces between ordered and disordered lipid domains are the predominant sites of fusion. Here we show that line tension at lipid domain boundaries contributes significant energy to drive gp41-fusion peptide-mediated fusion. This energy, which depends on the hydrophobic mismatch between ordered and disordered lipid domains, may contribute tens of kB T to fusion, that is, it is comparable to the energy required to form a lipid stalk intermediate. Line-active compounds such as vitamin E lower line tension in inhomogeneous membranes, thereby inhibit membrane fusion, and thus may be useful natural viral entry inhibitors.

Details

Title
Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion
Author
Yang, Sung-tae; Kiessling, Volker; Tamm, Lukas K
Pages
11401
Publication year
2016
Publication date
Apr 2016
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1784116242
Copyright
Copyright Nature Publishing Group Apr 2016