Full text

Turn on search term navigation

Copyright Nature Publishing Group Jan 2014

Abstract

A single somatic mutation, V617F, in Janus kinase 2 (JAK2) is one of the causes of myeloproliferative neoplasms (MPNs), including primary myelofibrosis, and the JAK2V617F mutant kinase is a therapeutic target in MPN. However, inhibition of wild-type (WT) JAK2 can decrease the erythrocyte or platelet (PLT) count. Our selective JAK2 inhibitor, NS-018, suppressed the growth of Ba/F3 cells harboring JAK2V617F more strongly than that of cells harboring WT JAK2. The 4.3-fold JAK2V617F selectivity of NS-018 is higher than the 1.0- to 2.9-fold selectivity of seven existing JAK2 inhibitors. NS-018 also inhibited erythroid colony formation in JAK2V617F transgenic mice at significantly lower concentrations than in WT mice. In keeping with the above results, in a JAK2V617F bone marrow transplantation mouse model with a myelofibrosis-like disease, NS-018 reduced leukocytosis and splenomegaly, improved bone marrow fibrosis and prolonged survival without decreasing the erythrocyte or PLT count in the peripheral blood. By exploring the X-ray co-crystal structure of NS-018 bound to JAK2, we identified unique hydrogen-bonding interactions between NS-018 and Gly993 as a plausible explanation for its JAK2V617F selectivity. These results suggest that NS-018 will have therapeutic benefit for MPN patients through both its efficacy and its reduced hematologic adverse effects.

Details

Title
Effect of NS-018, a selective JAK2V617F inhibitor, in a murine model of myelofibrosis
Author
Nakaya, Y; Shide, K; Naito, H; Niwa, T; Horio, T; Miyake, J; Shimoda, K
Pages
e174
Publication year
2014
Publication date
Jan 2014
Publisher
Springer Nature B.V.
e-ISSN
20445385
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1784930465
Copyright
Copyright Nature Publishing Group Jan 2014