Full text

Turn on search term navigation

Copyright Nature Publishing Group May 2015

Abstract

The dependence receptor Neogenin and its ligand, the repulsive guidance molecule a (RGMa), regulate apoptosis and axonal growth in the developing and the adult central nervous system (CNS). Here, we show that this pathway has also a critical role in neuronal death following stroke, and that providing RGMa to neurons blocks Neogenin-induced death. Interestingly, the Neogenin pro-death function following ischemic insult depends on Neogenin association with lipid rafts. Thus, a peptide that prevents Neogenin association with lipid rafts increased neuronal survival in several in vitro stroke models. In rats, a pro-survival effect was also observed in a model of ocular ischemia, as well as after middle cerebral artery occlusion (MCAO). Treatments that prevented Neogenin association with lipid rafts improved neuronal survival and the complexity of the neuronal network following occlusion of the middle artery. Toward the development of a treatment for stroke, we developed a human anti-RGMa antibody that also prevents Neogenin association with lipid rafts. We show that this antibody also protected CNS tissue from ischemic damage and that its application resulted in a significant functional improvement even when administrated 6 h after artery occlusion. Thus, our results draw attention to the role of Neogenin and lipid rafts as potential targets following stroke.

Details

Title
Uncoupling Neogenin association with lipid rafts promotes neuronal survival and functional recovery after stroke
Author
Shabanzadeh, A P; Tassew, N G; Szydlowska, K; Tymianski, M; Banerjee, P; Vigouroux, R J; Eubanks, J H; Huang, L; Geraerts, M; Koeberle, P D; Mueller, B K; Monnier, P P
Pages
e1744
Publication year
2015
Publication date
May 2015
Publisher
Springer Nature B.V.
e-ISSN
20414889
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1785930175
Copyright
Copyright Nature Publishing Group May 2015