Abstract
The Zika virus (ZIKV), first discovered in 1947, has emerged as a global public health threat over the last decade, with the accelerated geographic spread of the virus noted during the last 5 years. The World Health Organization (WHO) predicts that millions of cases of ZIKV are likely to occur in the Americas during the next 12 months. These projections, in conjunction with suspected Zika-associated increase in newborn microcephaly cases, prompted WHO to declare public health emergency of international concern. ZIKV-associated illness is characterized by an incubation period of 3-12 days. Most patients remain asymptomatic (i.e., ~80%) after contracting the virus. When symptomatic, clinical presentation is usually mild and consists of a self-limiting febrile illness that lasts approximately 2-7 days. Among common clinical manifestations are fever, arthralgia, conjunctivitis, myalgia, headache, and maculopapular rash. Hospitalization and complication rates are low, with fatalities being extremely rare. Newborn microcephaly, the most devastating and insidious complication associated with the ZIKV, has been described in the offspring of women who became infected while pregnant. Much remains to be elucidated about the timing of ZIKV infection in the context of the temporal progression of pregnancy, the corresponding in utero fetal development stage(s), and the risk of microcephaly. Without further knowledge of the pathophysiology involved, the true risk of ZIKV to the unborn remains difficult to quantify and remediate. Accurate, portable, and inexpensive point-of-care testing is required to better identify cases and manage the current and future outbreaks of ZIKV, including optimization of preventive approaches and the identification of more effective risk reduction strategies. In addition, much more work needs to be done to produce an effective vaccine. Given the rapid geographic spread of ZIKV in recent years, a coordinated local, regional, and global effort is needed to generate sufficient resources and political traction to effectively halt and contain further expansion of the current outbreak.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer