It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The Moore's law (ML) is one of many empirical expressions that is used to characterize natural and artificial phenomena. The ML addresses technological progress and is expected to predict future trends. Yet, the "art" of predicting is often confused with the accurate fitting of trendlines to past events. Presently, data-series of multiple sources are available for scientific and computational processing. The data can be described by means of mathematical expressions that, in some cases, follow simple expressions and empirical laws. However, the extrapolation toward the future is considered with skepticism by the scientific community, particularly in the case of phenomena involving complex behavior. This paper addresses these issues in the light of entropy and pseudo-state space. The statistical and dynamical techniques lead to a more assertive perspective on the adoption of a given candidate law.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer