It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
It has been reported that the composition of human gut microbiota changes with age; however, few studies have used molecular techniques to investigate the long-term, sequential changes in gut microbiota composition. In this study, we investigated the sequential changes in gut microbiota composition in newborn to centenarian Japanese subjects.
Results
Fecal samples from 367 healthy Japanese subjects between the ages of 0 and 104 years were analyzed by high-throughput sequencing of amplicons derived from the V3-V4 region of the 16S rRNA gene. Analysis based on bacterial co-abundance groups (CAGs) defined by Kendall correlations between genera revealed that certain transition types of microbiota were enriched in infants, adults, elderly individuals and both infant and elderly subjects. More positive correlations between the relative abundances of genera were observed in the elderly-associated CAGs compared with the infant- and adult-associated CAGs. Hierarchical Ward's linkage clustering based on the abundance of genera indicated five clusters, with median (interquartile range) ages of 3 (0-35), 33 (24-45), 42 (32-62), 77 (36-84) and 94 (86-98) years. Subjects were predominantly clustered with their matched age; however, some of them fell into mismatched age clusters. Furthermore, clustering based on the proportion of transporters predicted by phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) showed that subjects were divided into two age-related groups, the adult-enriched and infant/elderly-enriched clusters. Notably, all the drug transporters based on Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology groups were found in the infant/elderly-enriched cluster.
Conclusion
Our results indicate some patterns and transition points in the compositional changes in gut microbiota with age. In addition, the transporter property prediction results suggest that nutrients in the gut might play an important role in changing the gut microbiota composition with age.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer