It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Fine-scale targeting of interventions is increasingly important where epidemiological disease profiles depict high geographical stratifications. This study verified correlations between household biomass and mosquito house-entry using experimental hut studies, and then demonstrated how geographical foci of mosquito biting risk can be readily identified based on spatial distributions of household occupancies in villages.
Methods
A controlled 4 × 4 Latin square experiment was conducted in rural Tanzania, in which no, one, three or six adult male volunteers slept under intact bed nets, in experimental huts. Mosquitoes entering the huts were caught using exit interception traps on eaves and windows. Separately, monthly mosquito collections were conducted in 96 randomly selected households in three villages using CDC light traps between March-2012 and November-2013. The number of people sleeping in the houses and other household and environmental characteristics were recorded. ArcGIS 10 (ESRI-USA) spatial analyst tool, Gi* Ord Statistic was used to analyse clustering of vector densities and household occupancy.
Results
The densities of all mosquito genera increased in huts with one, three or six volunteers, relative to huts with no volunteers, and direct linear correlations within tested ranges (P < 0.001). Significant geographical clustering of indoor densities of malaria vectors, Anopheles arabiensis and Anopheles funestus, but not Culex or Mansonia species occurred in locations where households with highest occupancy were also most clustered (Gi* P ≤ 0.05, and Gi* Z-score ≥1.96).
Conclusions
This study demonstrates strong correlations between household occupancy and malaria vector densities in households, but also spatial correlations of these variables within and between villages in rural southeastern Tanzania. Fine-scale clustering of indoor densities of vectors within and between villages occurs in locations where houses with highest occupancy are also clustered. The study indicates potential for using household census data to preliminarily identify households with greatest Anopheles mosquito biting risk.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer