It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Activation of NMDA receptors can induce iron movement into neurons by the small GTPase Dexras1 via the divalent metal transporter 1 (DMT1). This pathway under pathological conditions such as NMDA excitotoxicity contributes to metal-catalyzed reactive oxygen species (ROS) generation and neuronal cell death, and yet its physiological role is not well understood.
Results
We found that genetic and pharmacological ablation of this neuronal iron pathway in the mice increased glutamatergic transmission. Voltage sensitive dye imaging of hippocampal slices and whole-cell patch clamping of synaptic currents, indicated that the increase in excitability was due to synaptic modification of NMDA receptor activity via modulation of the PKC/Src/NR2A pathway. Moreover, we identified that lysosomal iron serves as a main source for intracellular iron signaling modulating glutamatergic excitability.
Conclusions
Our data indicates that intracellular iron is dynamically regulated in the neurons and robustly modulate synaptic excitability under physiological condition. Since NMDA receptors play a central role in synaptic neurophysiology, plasticity, neuronal homeostasis, neurodevelopment as well as in the neurobiology of many diseases, endogenous iron is therefore likely to have functional relevance to each of these areas.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer